

Product Features

- DC 6000 MHz
- +19 dBm P1dB at 900 MHz
- +33.5 dBm OIP3 at 900 MHz
- 14 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-86 SMT Package
- Internally matched to 50 Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Product Description

The AG602-86 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG602-86 typically provides 14 dB gain, +33.5 dBm OIP3, and +19 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTBF values exceeding 100 years at mounting temperatures of +85 °C & is housed in a SOT-86 industry-standard SMT lead-free/green/RoHS-complete package.

The AG602-86 consists of Darlington pair amplifier using the high reliability InGaP/GaAs HBT process and only requires DC-blocking capacitors, a and an inductive RF choke for operation.

The broadband MMIC amplifier can be various current and next generation wix such as GPRS, GSM, CDMA, and CDMA. the AG602-86 will work for other within the DC to 6 GHz freque and fixed wireless.

Function

Typical

1900

12.9

-17

-16

+18.7

+33.5

4.6

2140

12.7

-16

-15

+18.7

+33.3

4.6

900

13.8

-13

-17

+19.0

+33.7

4.5

-12

-17

+19.0

+33.9

4.5

Specifications ^{(*}	1)		Towal Performance (1))
Parameter	Units	Min	Ty ax Gram Units	
Operational Bandwidth	MHz	DC	5000 Frequence MHz 500	
Test Frequency	MHz		S216 dB 14.0	

Operational Bandwidth	MHz	DC		2000
Test Frequency	MHz		(00)	,
Gain	dB	((V)
Input Return Loss	dB		V 25/3	(2)
Output Return Loss	dB	20	717	
Output IP3 (2)	dBm	(0)	+19.00	>> <
Output IP2	dBm 🗸		+367	S. 6
Output P1dB	dBigg C		CAN	
Noise Figure	AB.	~ (0 X3	
Test Frequency	MD)		3000	
Gain	7	IT(O)	128	13.9
Output IP3 (2)	dBm _	(4)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1))
Output P1dB	/dBm	(0)	₹ <u>₹</u>	
Device Voltage	V(C) (55.16	
Device Current	(w)	2	75	
> <	MM	/	,	

1. Test conditions

Paramet	Rating	
Operating Case Te Turure	-40 to +85 °C	
Storag per de	-55 to +125 °C	
DC We	+7 V	
R Power continuous)	+10 dBm	
n Temerature	+250° C	

Ordering Information

dB

dB

dBm

dBm

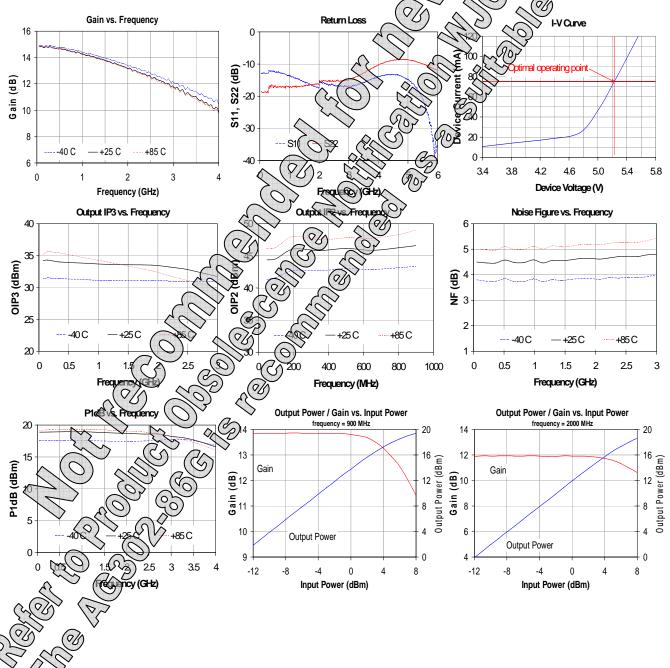
dB

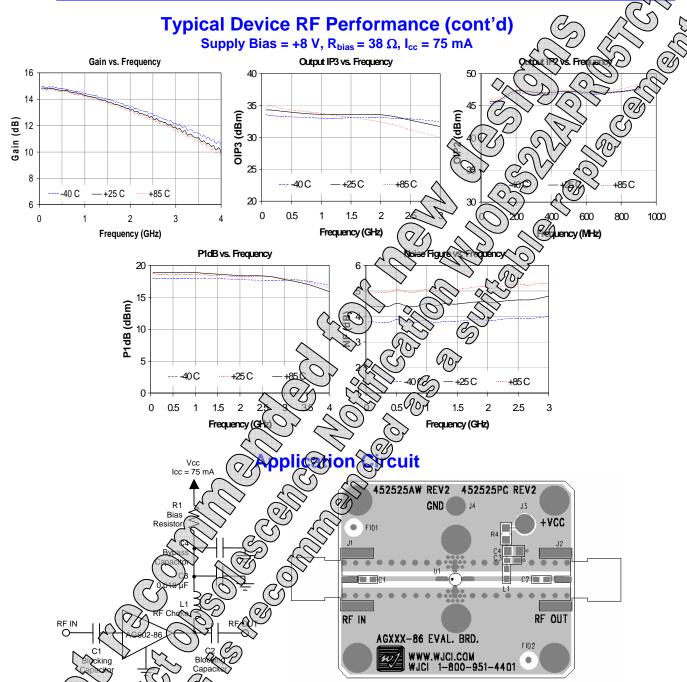
utput P1dB

Output IP3

Noise Figure

Part No.	Description
AG602-86	InGaP HBT Gain Block (lead-tin SOT-86 Pkg)
AG602-86G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 Pkg)


ne 3OIP using a 2:1 rule.


Typical Device RF Performance Supply Bias = +6 V, R_{bias} = 11.2 Ω , I_{cc} = 75 mA

Frequency	MHz	100	500	900	1900	2140	2400	35(11)
S21	dB	14.2	14.0	13.8	12.9	12.7	12.4	N. F.
S11	dB	-12	-12	-13	-17	-16	-16	2
S22	dB	-19	-17	-17	-16	-15	-15	K B
Output P1dB	dBm	+18.9	+19.0	+19.0	+18.7	+18.7	(H86)	17.6
Output IP3	dBm	+34.2	+33.9	+33.7	+33.5	+33.3	(+63,0)	S
Noise Figure	dB	4.5	4.5	4.5	4.6	4.6	47	
	•		•		•			1-1-1

1. Test conditions: $T = 25^{\circ}$ C, Supply Voltage = +6 V, Device Voltage = 5.16 V, Rbias = 11.2 Ω , Icc = 75 mA typical, 50 Ω Syste 2. 30IP measured with two tones at an output power of +2 dBm/tone separated by 10 MHz. The suppression on the largest IM3 p 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by extent

Recommen Frequency (MHz) 2200 900 1900 2500 3500 68 nH 27 nH 22 nH 18 nH 15 nH L1 C1, C2, C4 100 pF 68 pF 56 pF 39 pF 68 pF

are dependent upon the intended frequency of operation.
on the evaluation board to achieve optimal broadband performance:

~	Ref Doig	Value / Type	Size
\	LL	39 nH wirewound inductor	0603
)~	CAD	56 pF chip capacitor	0603
	C3V	0.018 μF chip capacitor	0603
(OB)4	Do Not Place	
6	K1	10.0 Ω 1% tolerance	0805
0			

Pacommanded Rise Pacietor Values

Supply Voltage	R1 value	Size		
6 V	11.2 ohms	0805		
7 V	24.5 ohms	1210		
8 V	38 ohms	1210		
9 V	51 ohms	2010		
10 V	65 ohms	2010		
12 V	91 ohms	2512		

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

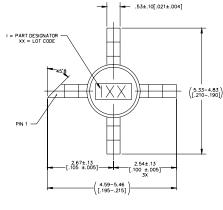
Specifications and information are subject to change without notice

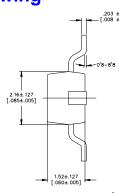
Product Information

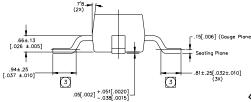
Typical Device Data

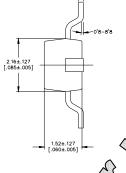
S-Parameters ($V_{device} = +5.16 \text{ V}$, $I_{CC} = 75 \text{ mA}$, $T = 25^{\circ} \text{ C}$, calibrated to device leads)

5-1 arameters (device - +3.10	\mathbf{v} , $\mathbf{i}_{CC} = 75 \text{ m/A}$,	1 = 25 C, cam	brated to device	c icaus)			$\sim\sim$
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	\$22 (aug)
50	-12.83	177.09	14.80	177.77	-18.80	0.08	(-1846)	0189
250	-12.82	170.56	14.74	169.43	-18.86	-1.92	10.50)C	70.20
500	-12.28	160.75	14.65	159.21	-18.96	-3.46	-13.03	2-179.93 (9
750	-12.95	151.18	14.52	149.21	-18.85	-6.03	2)17.02	178.26
1000	-13.42	141.09	14.36	139.36	-18.99	~9.60/A	-1769	-177
1250	-14.45	130.22	14.20	129.61	-18.80	2000	(2)8/\sqrt{s}	0x10x
1500	-15.66	118.89	13.96	119.96	-18.74	(-12.94)	76/00	د از دوی
1750	-16.63	107.21	13.72	110.48	-18.72	-1521	SAM C	0.21
2000	-17.29	91.44	13.45	101.21	-18.72	-17.16	T6.05	171.46
2250	-16.20	64.73	13.13	92.69	-18.62	19.12	15.30	-157.61
2500	-16.75	61.88	12.95	85.98	-18,62	> -20,02) -15,25	-166.73
2750	-16.88	58.51	12.66	77.40	-16.6	-22.10	(15(S))	-178.65
3000	-16.78	58.02	12.38	68.87	C1849	(ME)	NOTE OF	164.02
3250	-16.66	58.65	12.09	60.40	C (82)	(Jes	13.96	147.18
3500	-15.78	60.29	11.76	52.22	1842	30:43 M	10,712.75	131.66
3750	-14.83	64.00	11.38	43.53	-18.13	₩3.00 E	-11.49	119.00
4000	-14.00	65.81	11.02	35.47	-18,42	34.90	-10.22	110.33
4250	-13.41	67.18	10.72	(213O)	-100	-38	-9.34	103.54
4500	-13.22	67.82	10.44	219.90	-17-20-5	-GP)	-8.83	98.14
4750	-13.66	68.18	10.12	12.59	-51.00	-43.83	-8.56	95.06
5000	-14.82	69.02	9.96	5.20	(CI)00 (90,47.93	-8.67	93.79
5250	-17.08	69.30	9.80	V 12.71 ~ C	1.22	-50.61	-9.09	92.99
5500	-20.92	70.38	2.72	-8.45	\\-\frac{17.00}{}	-52.28	-9.99	93.56
5750	-28.67	80.98	891	-15.72	-16(70)	-56.37	-10.93	93.36
6000	-36.06	162.23	(0)	(29.50)	(6.48	-58.54	-12.13	92.07
			- VV	~ 11	7-1			


Device S-parameters are available for download off (10) website at: http://www.wj.com


for this part are the "Application


AG602-86 (SOT-86 Package) Mechanical Information

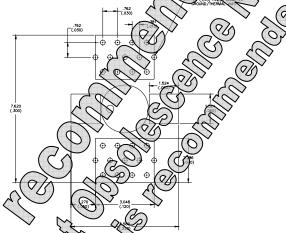

This package may contain lead-bearing materials. The plating material on the leads is

Outline Drawing

ting: Class 0 Passes at 150 V

Human Body Model (HBM) JEDEC Standard JESD22-A114 tandard:

aution! ESD sensitive device.

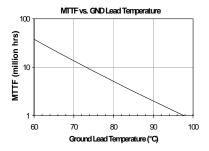

ESD Rating: Class II Value:

Passes at 250 V Test: Charged Device Model (CDM) JEDEC Standard JESD22-C101 Standard:

MSL Rating: Level 1

JEDEC Standard J-STD-020A Standard:

Land Patte


Mounting Config. Notes

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in

Therma

Junction Temperation 165 °C

- 1. The thermal r ed from the hottest part ble gran (pin 2 or 4). of the jundion
- Spical biasing condition of +5.16V 5 mA at 5 °C case temperature. A million hours is achieved for below 177 °C.

Specifications and information are subject to change without notice

Product Information

AG602-86G (Green / Lead-free Sot-86 Package) Mechanical

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and laded (maximum 245°C reflow temperature) soldering processes. The plating material on the pins is annealed in the pins is

M ESD Rating

caution! ESD sensitive device.

he package.

for this part are

in the "Application

Rating: Class 1C

Passes at 1000 V min.
Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes at 1000 V min.
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

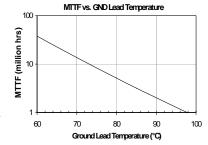
Land Patte

(3)

81±.25[.032±.010] (3X)

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
 Mounting screws can be added near the part to fasten the
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.


Therm specification

.94±.25 [.037 ±.010]

3

.05[.002] +.051[.0020] -.038[.0015]

- 1. The thermal resistance of the judicion to the end dead (pin 2 or 4).
- 2. This control of typical biasing condition of +51 of mA can 85 °C case temperature. A more marked for 1 million hours is achieved for the on temperature below 177 °C.

Specifications and information are subject to change without notice